Solution de la Série Nº3 : Endomorphismes, matrices et inverse d'une matrice

Exercice 1

Soit f l'endomorphisme de l'espace vectoriel $\mathbb C$ défini par

$$f(1) = 1$$
 et $f(i) = j$,

où j = $e^{i\frac{2\pi}{3}}$.

- 1. Démontrer que f est un automorphisme de \mathbb{C} .
- 2. Déterminer le complexe z tel que f(z) = i.
- 3. Soit f^{-1} l'application réciproque de f. Ecrire la matrice de f^{-1} relativement à la base $\{1,i\}$.

Solution : Soit f l'endomorphisme de l'espace vectoriel $\mathbb C$ défini par

$$f(1) = 1$$
 et $f(i) = j$,

où j = $e^{i\frac{2\pi}{3}}$.

1. Démontrons que f est un automorphisme de $\mathbb C$: soit $v\in\mathbb C$ tel que v=x.1+yi, alors

$$f(v) = xf(1) + yf(i) = x \cdot 1 + ye^{i\frac{2\pi}{3}} = \left(x + y\cos\left(\frac{2\pi}{3}\right)\right) + iy\sin\left(\frac{2\pi}{3}\right)$$

donc $f(v) = (x - \frac{1}{2}y) \cdot 1 - i\frac{\sqrt{3}}{2}y$. f est injectif, en effet,

$$Ker(f) = \{v \in E / f(v) = 0_E\} = \left\{v = x.1 + iy \in E / \left(x - \frac{1}{2}y\right).1 - i\frac{\sqrt{3}}{2}y = 0\right\}$$

comme le système {1, i} est libre, alors

$$\operatorname{Ker}(f) : \left\{ \begin{array}{rcl} x - \frac{1}{2}y & = & 0\\ \frac{\sqrt{3}}{2}y & = & 0, \end{array} \right.$$

d'où Ker(f) est le sous-espace vectoriel de E d'équation

$$\begin{cases} x = 0 \\ y = 0, \end{cases}$$

finalement $\mathrm{Ker}(f)=\{0\}$ est le sous-espace vectoriel nul de $\mathbb C$, ce qui prouve que f est injectif et comme $\dim_{\mathbb R}(\mathbb C)=2$ alors f est bijectif de $\mathbb C$ dans $\mathbb C$, soit f un automorphisme de $\mathbb C$.

- 2. Le $\{1,i\}$ est une base de \mathbb{C} , comme f est un automorphisme de \mathbb{C} alors f implique une base de \mathbb{C} en une autre base de \mathbb{C} , d'où $\{1,j\}$ est une autre base de \mathbb{C} .
- 3. Déterminons le complexe z tel que f(z) = i : soit z = x.1 + yi un complexe, alors

$$f(z) = f(x.1 + y.i) = xf(1) + yf(i) = \left(x - \frac{1}{2}y\right).1 - i\frac{\sqrt{3}}{2}y = i = 0.1 + 1.i$$

comme le système {1, i} est libre, alors

$$\begin{cases} x - \frac{1}{2}y &= 0 \\ \frac{\sqrt{3}}{2}y &= 1 \end{cases} \Leftrightarrow \begin{cases} x &= \frac{1}{2}y = \frac{\sqrt{3}}{3} \\ y &= \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3} \end{cases}$$

d'où $z=\frac{\sqrt{3}}{3}\left(1+2\mathrm{i}\right)$ est le complexe qui vérifie $f(z)=\mathrm{i}.$

4. Soit f^{-1} l'application réciproque de f. La matrice de f^{-1} relativement à la base (1, i) est : l'application f est linéaire et bijective alors f^{-1} est linéaire et bijective, et on a

$$f(1) = 1 \Leftrightarrow f^{-1}(1) = 1.1 + 0.i$$

et

$$f(i) = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \quad \Leftrightarrow \quad i = -\frac{1}{2}f^{-1}(1) + \frac{\sqrt{3}}{2}f^{-1}(i)$$

car f^{-1} est linéaire de $\mathbb C$ dans lui-même, donc

$$f^{-1}(i) = \frac{2}{\sqrt{3}} \left(i + \frac{1}{2} f^{-1}(1) \right) = \frac{2\sqrt{3}}{3} \left(i + \frac{1}{2} \cdot 1 \right) = \frac{\sqrt{3}}{3} \cdot 1 + \frac{2\sqrt{3}}{3} i$$

d'où la matrice de f^{-1} relativement à la base (1,i), notée $M_{(1,i)}(f^{-1})$, est donnée par

$$M_{(1,i)}(f^{-1}) = \begin{pmatrix} 1 & \frac{\sqrt{3}}{3} \\ 0 & \frac{2\sqrt{3}}{3} \end{pmatrix}.$$

Exercice 2

Soit F le sous-ensemble de \mathbb{R}^3 défini par

$$F = \{X = (x, y, z) \in \mathbb{R}^3 / x - y + 2z = 0\}$$

- 1. Montrer que F est un sous-espace vectoriel de \mathbb{R}^3 .
- 2. Déterminer une base de F.
- 3. Montrer que $\mathbb{R}^3 = F \oplus G$ où G est le sous-espace vectoriel de \mathbb{R}^3 engendré par le vecteur u = (2, 1, 1).

Solution : Soit F le sous-ensemble de \mathbb{R}^3 défini par

$$F = \{X = (x, y, z) \in \mathbb{R}^3 / x + y - 2z = 0\}$$

- 1. Montrons que F est un sous-espace vectoriel de \mathbb{R}^3 : en effet,
 - (a) $F \neq \emptyset \operatorname{car} 0_{\mathbb{R}^3} = (0,0,0) \in F$ puisque $0 + 0 2 \times 0 = (1 + 1 2)0 = 0 \times 0 = 0$.
 - (b) F est stable par l'addition (loi interne de \mathbb{R}^3): en effet, soient X=(x,y,z) et Y=(x',y',z') deux éléments dans F, alors

$$x + y - 2z = 0$$
 et $x' + y' - 2z' = 0$

par l'addition des deux équations, il vient

$$x+y-2z+x'+y'-2z'=0 \quad \Leftrightarrow \quad (x+x')+(y+y')-2(z+z')=0 \quad \text{car } (\mathbb{R},+) \text{ est abélien}$$

donc X+Y=(x+x',y+y',z+z') satisfait l'équation de F ; d'où $X+Y\in F$.

(c) F est stable par la multiplication (loi externe de \mathbb{R}^3): en effet, soient X=(x,y,z) un élément dans F et $\lambda \in \mathbb{R}$, alors

$$x + y - 2z = 0$$

par la multiplication de l'équation fois λ , il vient

$$\lambda(x+y-2z) = 0 \quad \Leftrightarrow \quad (\lambda x) + (\lambda y) - 2(\lambda z) = 0$$

donc $\lambda X = (\lambda x, \lambda y, \lambda z)$ satisfait l'équation de F; d'où $\lambda X \in F$.

D'après (a), (b) et (c) on obtient F est un sous-espace vectoriel de \mathbb{R}^3 .

2. Déterminons une base de F: en effet, soit X=(x,y,z) alors les composantes (x,y,z) de X sont caractérisées par l'équation

$$x + y - 2z = 0 \Leftrightarrow y = -x + 2z$$

donc $X=(x,y,z)=(x,-x+2z,z)=(x,-x,0)+(0,2z,z)=x(1,-1,0)+y(0,2,1)=xv_1+yv_2$ où $v_1=(1,-1,0)$ et $v_2=(0,2,1)$; d'où le système $\{v_1;v_2\}$ engendre F. le système $\{v_1;v_2\}$ est libre, en effet, soient α et β tels que α $v_1+\beta$ $v_2=0_{\mathbb{R}^3}$, alors

$$\alpha v_1 + \beta v_2 = \alpha(1, -1, 0) + \beta(0, 2, 1) = (\alpha, -\alpha + 2\beta, \beta) = (0, 0, 0)$$

donc $\alpha = \beta = 0$; d'où le système $\{v_1; v_2\}$ engendre F et il est libre; ce qui montre que le système $\{v_1; v_2\}$ où $v_1 = (1, -1, 0)$ et $v_2 = (0, 2, 1)$ est une base de F.

3. Montrons que $\mathbb{R}^3 = F \oplus G$ où G est le sous-espace vectoriel de \mathbb{R}^3 engendré par le vecteur u = (2,1,1): en effet, si le sous-espace vectoriel de G engendré par le vecteur u = (2,1,1) est un supplémentaire de F dans \mathbb{R}^3 , alors le système $\{v_1;v_2\} \cup \{u\}$ serait une base de \mathbb{R}^3 ; donc il suffit de montrer que le système $\{v_1;v_2;u\}$ est une base dans \mathbb{R}^3 ; comme $\dim(\mathbb{R}^3) = 3$, alors il suffit de montrer que le système $\{v_1;v_2;u\}$ est libre dans \mathbb{R}^3 . Pour cela, soient α , β et γ des réels tels que α $v_1 + \beta$ $v_2 + \gamma$ u = (0,0,0); montrons que $\alpha = \beta = \gamma = 0$. On a

$$\alpha v_1 + \beta v_2 + \gamma u = \alpha(1, -1, 0) + \beta(0, 2, 1) + \gamma(2, 1, 1) = (\alpha + 2\gamma, -\alpha + 2\beta + \gamma, \beta + \gamma) = (0, 0, 0)$$

ce qui implique

$$\begin{cases} \alpha + 2\gamma = 0 \\ -\alpha + 2\beta + \gamma = 0 \\ \beta + \gamma = 0 \end{cases} \Rightarrow \begin{cases} \alpha = 2\gamma \\ \beta = -\gamma \\ 2\gamma - 2\gamma + \gamma = 0 \end{cases} \Rightarrow \begin{cases} \alpha = 2\gamma \\ \beta = -\gamma \\ \gamma = 0 \end{cases}$$

donc $\alpha = \beta = \gamma = 0$; ce qui montre que le système $\{v_1; v_2; u\}$ est libre dans \mathbb{R}^3 ; d'où le système $\{v_1; v_2; u\}$ est une base de \mathbb{R}^3 ; ce qui prouve que $\mathbb{R}^3 = F \oplus G$ où G est le sous-espace vectoriel de \mathbb{R}^3 engendré par le vecteur u = (2, 1, 1).

Remarque: F est un plan de \mathbb{R}^3 engendré par le système $\{v_1; v_2\}$ où $v_1 = (1, -1, 0)$ et $v_2 = (0, 2, 1)$ et G est une droite vectorielle engendrée par le vecteur u = (2, 1, 1).

Exercice 3

Soit E un espace vectoriel de dimension 2 et (i,j) une base de E. Soit f et g deux endomorphismes de E dont les matrices dans la base (i,j) sont respectivement :

$$A = \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}.$$

Soit $(x, y) \in \mathbb{R}$.

- 1. Montrer que f et g sont inversibles (ou bijectifs), puis trouver les matrices de f^{-1} et g^{-1} dans la base (i, j).
- 2. Déterminer dans la base (i, j) les matrices des endomorphismes suivants :

$$(x.f - y.g);$$
 $(2.f - x.id_E);$ $(-f + \pi.g);$ $(x.f + \pi y.g).$

3. Trouver des relations entre x et y pour que les endomorphismes

$$(x.f - y.g); (2.f - x.id_E); (-f + \pi.g); (x.f + \pi y.g)$$

soient inversibles.

Solution : Soit E un espace vectoriel de dimension 2 et (i, j) une base de E. Soit f et g deux endomorphismes de E dont les matrices dans la base (i, j) sont respectivement :

$$A = \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}.$$

Soit $(x, y) \in \mathbb{R}$.

1. – Montrons que f et g sont inversibles : on a $A=M_{(i,j)}(f)=\begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix}$, alors f est bijectif si et seulement si A est inversible, soit $\det(A)\neq 0$. On a

$$\det(A) = \det\begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} = 1 \times 5 - 2 \times 4 = 5 - 8 = -3 \neq 0$$

donc A est inversible, d'où f est bijectif.

Ded même, on a $B=M_{(i,j)}(g)=\begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$, alors g est inversible si et seulement si B est inversible, soit $\det(B)\neq 0$. On a

$$\det(B) = \det\begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = 8 \times 5 - 6 \times 7 = 40 - 42 = -2 \neq 0$$

donc B est inversible, d'où g est bijectif.

- Les matrices de f^{-1} et g^{-1} dans la base (i, j): on a

$$A = M_{(i,j)}(f) = \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} \Leftrightarrow \begin{cases} f(i) & = 1.i + 4.j \\ f(j) & = 2.i + 5.j, \end{cases} \Leftrightarrow \begin{cases} i & = f^{-1}(1.i + 4.j) \\ j & = f^{-1}(2.i + 5.j), \end{cases}$$

donc

$$\begin{cases} i = f^{-1}(i) + 4f^{-1}(j) \\ j = 2f^{-1}(i) + 5f^{-1}(j), \end{cases}$$

d'où

$$\left\{ \begin{array}{ll} f^{-1}(i) & = & -\frac{5}{3}i + \frac{4}{3}j \\ f^{-1}(j) & = & \frac{2}{3}i - \frac{1}{3}j, \end{array} \right.$$

finalement,

$$A^{-1} = M_{(i,j)}(f^{-1}) = \begin{pmatrix} -\frac{5}{3} & \frac{2}{3} \\ \frac{4}{3} & -\frac{1}{3} \end{pmatrix}.$$

De même, on a

$$B = M_{(i,j)}(g) = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \Leftrightarrow \begin{cases} g(i) = 5.i + 7.j \\ g(j) = 6.i + 8.j, \end{cases} \Leftrightarrow \begin{cases} i = g^{-1}(5.i + 7.j) \\ j = g^{-1}(6.i + 8.j), \end{cases}$$

donc

$$\left\{ \begin{array}{lcl} i & = & 5g^{-1}(i) + 7g^{-1}(j) \\ j & = & 6g^{-1}(i) + 8g^{-1}(j), \end{array} \right.$$

d'où

$$\begin{cases} g^{-1}(i) &= -4i + \frac{7}{2}j\\ g^{-1}(j) &= 3i - \frac{5}{2}j, \end{cases}$$

finalement,

$$B^{-1} = M_{(i,j)}(g^{-1}) = \begin{pmatrix} -4 & 3\\ \frac{7}{2} & -\frac{5}{2} \end{pmatrix}.$$

2. Déterminons les matrices des endomorphismes suivants :

$$(x.f - y.g); (2.f - x.id_E); (-f + \pi.g); (x.f + \pi y.g)$$

relativement la base (i, j):

$$\begin{split} &M_{(i,j)}(x.f-y.g) = x M_{(i,j)}(f) - y M_{(i,j)}(g) = x \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} - y \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} x - 5y & 2x - 6y \\ 4x - 7y & 5x - 8y \end{pmatrix} \\ &M_{(i,j)}(2.f-x.id_E) = 2 M_{(i,j)}(f) - x M_{(i,j)}(id_E) = 2 \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} - x \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 - x & 4 \\ 8 & 10 - x \end{pmatrix} \\ &M_{(i,j)}(-f+\pi.g) = -M_{(i,j)}(f) + \pi M_{(i,j)}(g) = -\begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} + \pi \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} -1 + 5\pi & -2 + 6\pi \\ -4 + 7\pi & -5 + 8\pi \end{pmatrix} \\ &M_{(i,j)}(x.f+\pi y.g) = x M_{(i,j)}(f) + \pi y M_{(i,j)}(g) = x \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} + \pi y \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} x + 5\pi y & 2x + 6\pi y \\ 4x + 7\pi y & 5x + 8\pi y \end{pmatrix} \end{split}$$

3. Les relations entre x et y pour que les endomorphismes

$$(x.f - y.g);$$
 $(2.f - x.id_E);$ $(-f + \pi.g);$ $(x.f + \pi y.g)$

soient inversibles:

- l'endomorphisme (x.f - y.g) est bijectif si la matrice $M_{(i,j)}(x.f - y.g)$ est inversible, soit

$$\det(M_{(i,j)}(x.f - y.g)) \neq 0$$

or

$$\det(M_{(i,j)}(x.f - y.g)) = \det\begin{pmatrix} x - 5y & 2x - 6y \\ 4x - 7y & 5x - 8y \end{pmatrix}$$

$$= (x - 5y)(5x - 8y) - (2x - 6y)(4x - 7y)$$

$$= -3x^2 + 5xy - 2y^2$$

d'où (x.f - y.g) est bijectif si $-3x^2 + 5xy - 2y^2 \neq 0$.

- l'endomorphisme $(2.f - x.id_E)$ est bijectif si la matrice $M_{(i,j)}(2.f - x.id_E)$ est inversible, soit

$$\det(M_{(i,j)}(2.f - x.id_E)) \neq 0$$

or

$$\det(M_{(i,j)}(2.f - x.id_E)) = \det\begin{pmatrix} 2-x & 4\\ 8 & 10-x \end{pmatrix}$$
$$= (2-x)(10-x) - 4 \times 8$$
$$= x^2 - 12x - 12$$

d'où $(2.f - x.id_E)$ est bijectif si $x^2 - 12x - 12 \neq 0$.

- l'endomorphisme $(-f + \pi g)$ est bijectif si la matrice $M_{(i,j)}(-f + \pi g)$ est inversible, soit

$$\det(M_{(i,j)}(-f + \pi.g)) \neq 0$$

or

$$\det(M_{(i,j)}(-f+\pi g)) = \det\begin{pmatrix} -1+5\pi & -2+6\pi \\ -4+7\pi & -5+8\pi \end{pmatrix}$$
$$= (-1+5\pi)(-5+8\pi) - (-2+6\pi)(-4+7\pi)$$
$$= -2\pi^2 + 5\pi - 3$$

d'où $(-f + \pi g)$ est bijectif car $-2\pi^2 + 5\pi - 3 \neq 0$.

- l'endomorphisme $(x.f + \pi y.g)$ est bijectif si la matrice $M_{(i,j)}(x.f + \pi y.g)$ est inversible, soit

$$\det(M_{(i,j)}(x.f + \pi y.g)) \neq 0$$

or

$$\det(M_{(i,j)}(x.f + \pi y.g)) = \begin{pmatrix} x + 5\pi y & 2x + 6\pi y \\ 4x + 7\pi y & 5x + 8\pi y \end{pmatrix}$$
$$= (x + 5\pi y)(5x + 8\pi y) - (2x + 6\pi y)(4x + 7\pi y)$$
$$= -3x^2 - 5\pi xy - 2\pi^2 y^2$$

d'où $(x.f + \pi y.g)$ est bijectif si $-3x^2 - 5\pi xy - 2\pi^2 y^2 \neq 0$.

Exercice 4

Soit E un espace vectoriel et f un endomorphisme de E tel que f^2 soit l'endomorphisme nul.

- 1. Calculer $(id_E f) \circ (id_E + f)$.
- 2. En déduire que $(id_E f)$ et $(id_E + f)$ sont bijectifs. Quels sont les endomorphismes $(id_E f)^{-1}$ et $(id_E + f)^{-1}$.
- 3. Vérifier les résultats précédents lorsque l'espace vectoriel E est de dimension 2 et lorsque f est l'endomorphisme de E dont la matrice dans une base (i,j) fixée de E est :

(a)
$$A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
.

(b)
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
.

(c)
$$A = \begin{pmatrix} 1 & -\frac{1}{2} \\ 2 & -1 \end{pmatrix}$$
.

Solution : Soit E un espace vectoriel et f un endomorphisme de E tel que f^2 soit l'endomorphisme nul.

1. Calculons $(id_E - f) \circ (id_E + f)$: soit $x \in E$, on a

$$(id_{E} - f) \circ (id_{E} + f)(x) = id_{E} \circ id_{E}(x) + id_{E} \circ f(x) - f \circ id_{E}(x) - f \circ f(x)$$

$$= x - f(x) + f(x) - f^{2}(x)$$

$$= x + (1 - 1)f(x) + 0_{E}$$

$$= id_{E}(x)$$

 $\begin{array}{l} \operatorname{donc}\,(id_E-f)\circ(id_E+f)(x)=id_E(x) \text{ pour tout } x\in E,\\ \operatorname{d'où}\,(id_E-f)\circ(id_E+f)=id_E \text{ est l'endomorphisme identique de } E. \end{array}$

- 2. D'après la question 1., on a $(id_E f) \circ (id_E + f) = id_E$ et de même on a $(id_E + f) \circ (id_E f) = id_E$, ce qui montre $(id_E f)$ et $(id_E + f)$ sont bijectifs.
 - les endomorphismes $(id_E f)^{-1}$ et $(id_E + f)^{-1}$ sont $(id_E f)^{-1} = (id_E + f)$ et $(id_E + f)^{-1} = (id_E f)$, car $(id_E f) \circ (id_E + f)(x) = id_E(x) = x$ et $(id_E + f) \circ (id_E f)(x) = id_E(x) = x$ pour tout $x \in E$, soit $(id_E + f)(x) = (id_E f)^{-1}(x)$ et $(id_E f)(x) = (id_E + f)^{-1}(x)$ pour tout $x \in E$.
- 3. Soit E l'espace vectoriel de dimension 2 et f est l'endomorphisme de E dont la matrice dans une base (i, j) fixée de E est :

(a)
$$A = M_{(i,j)}(f) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
, alors
$$\begin{cases} f(i) &= & 0i+1j=j \\ f(j) &= & 0i+0j=0_E, \end{cases} \Leftrightarrow \begin{cases} (id_E - f)(i) &= & i-j \\ (id_E - f)(j) &= & j, \end{cases}$$

et

$$\begin{cases} (id_E + f)(i) &= i + j \\ (id_E + f)(j) &= j, \end{cases}$$

On a

$$(id_E - f) \circ (id_E + f)(i) = (id_E - f)(i + j) = i + j - f(i) - f(j) = i + j - j - 0_E = i$$

$$(id_E - f) \circ (id_E + f)(j) = (id_E - f)(j) = id_E(j) - f(j) = j - 0_E = j,$$

donc pour tout $v = xi + yj \in E$ on a

$$(id_E - f) \circ (id_E + f)(v) = x(id_E - f) \circ (id_E + f)(i) + y(id_E - f) \circ (id_E + f)(j) = xi + yj = v = id_E(v)$$

d'où $(id_E - f) \circ (id_E + f) = id_E$. De plus, on a

$$M_{(i,j)}((id_E - f)^{-1}) = M_{(i,j)}((id_E + f)) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

et

$$M_{(i,j)}((id_E+f)^{-1}) = M_{(i,j)}((id_E-f)) = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

(b)
$$A = M_{(i,j)}(f) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, alors

$$\left\{ \begin{array}{lll} f(i) &=& 0i+0j=0_E \\ f(j) &=& 1i+0j=i, \end{array} \right. \Leftrightarrow \left\{ \begin{array}{lll} (id_E-f)(i) &=& i \\ (id_E-f)(j) &=& -i+j, \end{array} \right.$$

et

$$\begin{cases} (id_E + f)(i) &= i \\ (id_E + f)(j) &= i + j \end{cases}$$

On a

$$(id_E - f) \circ (id_E + f)(i) = (id_E - f)(i) = i - f(i) = i - 0_E = i$$

$$(id_E - f) \circ (id_E + f)(j) = (id_E - f)(i + j) = i + j - f(i) - f(j) = i + j - i = j,$$

donc pour tout $v = xi + yj \in E$ on a

$$(id_E - f) \circ (id_E + f)(v) = x(id_E - f) \circ (id_E + f)(i) + y(id_E - f) \circ (id_E + f)(j) = xi + yj = v = id_E(v)$$

d'où $(id_E - f) \circ (id_E + f) = id_E$. De plus, on a

$$M_{(i,j)}((id_E - f)^{-1}) = M_{(i,j)}((id_E + f)) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

et

$$M_{(i,j)}((id_E+f)^{-1})=M_{(i,j)}((id_E-f))=\begin{pmatrix} 1 & -1\\ 0 & 1 \end{pmatrix}$$

(c)
$$A = M_{(i,j)}(f) = \begin{pmatrix} 1 & -\frac{1}{2} \\ 2 & -1 \end{pmatrix}$$
, alors

$$\left\{ \begin{array}{lll} f(i) &=& 1i+2j \\ f(j) &=& -\frac{1}{2}i-1j, \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{lll} (id_E-f)(i) &=& -2i \\ (id_E-f)(j) &=& \frac{1}{2}i+2j, \end{array} \right.$$

et

$$\begin{cases} (id_E + f)(i) &= 2i + 2j \\ (id_E + f)(j) &= -\frac{1}{2}i, \end{cases}$$

On a

$$(id_{E} - f) \circ (id_{E} + f)(i) = (id_{E} - f)(2i + 2j) = 2(i + j) - 2f(i) - 2f(j)$$

$$= 2(i + j - i - 2j + \frac{1}{2}i + j)$$

$$= i$$

$$(id_{E} - f) \circ (id_{E} + f)(j) = (id_{E} - f)(-\frac{1}{2}i) = -\frac{1}{2}i + \frac{1}{2}f(i)$$

$$= -\frac{1}{2}i + \frac{1}{2}(1i + 2j)$$

$$= j,$$

donc pour tout $v = xi + yj \in E$ on a

$$(id_E - f) \circ (id_E + f)(v) = x(id_E - f) \circ (id_E + f)(i) + y(id_E - f) \circ (id_E + f)(j) = xi + yj = v = id_E(v)$$

d'où $(id_E - f) \circ (id_E + f) = id_E$. De plus, on a

$$M_{(i,j)}((id_E - f)^{-1}) = M_{(i,j)}((id_E + f)) = \begin{pmatrix} 2 & -\frac{1}{2} \\ 2 & 0 \end{pmatrix}$$

et

$$M_{(i,j)}((id_E + f)^{-1}) = M_{(i,j)}((id_E - f)) = \begin{pmatrix} -2 & \frac{1}{2} \\ 0 & 2 \end{pmatrix}$$

Exercice 5

On note par O la matrice nulle et $I=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ la matrice identité d'ordres 2. Soit $A=\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ telle que

$$\begin{cases} \alpha + \delta &= -1\\ \alpha \delta - \beta \gamma &= -2, \end{cases}$$

On désigne $E = \overline{\langle I, A \rangle}$ l'espace engendré par les matrices I et A.

- 1. Quelle est la dimension de E?.
- 2. Vérifier que :

$$A^2 = -A + 2.I.$$

En déduire que A est inversible et que $A^{-1} \in E$.

- 3. Montrer que E est un sous-anneau de $\mathcal{M}_2(\mathbb{R})$.
- 4. On prend $\alpha = -1$, $\beta = 2$, $\gamma = 1$ et $\delta = 0$.
 - (a) Vérifier que la relation : $A^2 = -A + 2.I$, est satisfaite.
 - (b) Préciser le noyau et l'image des endomorphismes φ et ψ de \mathbb{R}^2 dont les matrices dans la base naturelle sont respectivement :

A et
$$A+2.I$$
.

Solution : Soit O la matrice nulle et $I=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ la matrice identité d'ordres 2. Soit $A=\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ telle que

$$\begin{cases} \alpha + \delta &= -1\\ \alpha \delta - \beta \gamma &= -2, \end{cases}$$

Désignons par $E = \overline{\langle I, A \rangle}$ l'espace engendré par les matrices I et A.

1. La dimension de E est 2 : en effet, E est engendré par le système $\{I,A\}$ qui est de cardinal 2, soit $\dim(E) = \operatorname{card}\{I,A\} = 2$.

2. – Vérifions que $A^2 = -A + 2.I$: en effet,

$$A^{2} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} \alpha^{2} + \beta \gamma & \beta(\alpha + \delta) \\ \gamma(\alpha + \delta) & \delta^{2} + \beta \gamma \end{pmatrix} = \begin{pmatrix} \alpha^{2} + \alpha \delta + 2 & -\beta \\ -\gamma & \delta^{2} + \alpha \delta + 2 \end{pmatrix}$$

 $\operatorname{car} \alpha + \delta = -1 \text{ et } \alpha \delta + 2 = \beta \gamma \text{ donc}$

$$A^{2} = \begin{pmatrix} \alpha^{2} + \alpha\delta & -\beta \\ -\gamma & \delta^{2} + \alpha\delta \end{pmatrix} + 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \alpha(\alpha + \delta) & -\beta \\ -\gamma & \delta(\delta + \alpha) \end{pmatrix} + 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

d'où

$$A^{2} = \begin{pmatrix} -\alpha & -\beta \\ -\gamma & -\delta \end{pmatrix} + 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = - \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} + 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

c'est à dire que $A^2 = -A + 2I$

- La matrice A est inversible et que $A^{-1} \in E$: on vient de montrer que $A^2 = -A + 2I$, alors $A^2 + A = 2I$, donc A(A + I) = (A + I)A = 2I, d'où A est inversible, de plus on a

$$A^{-1} = \frac{1}{2}(A+I) = \frac{1}{2}\begin{bmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{bmatrix} = \frac{1}{2}\begin{pmatrix} \alpha+1 & \beta \\ \gamma & \delta+1 \end{pmatrix}$$

d'où $A^{-1} = \frac{1}{2}I + \frac{1}{2}A$, ce qui prouve que $A^{-1} \in E$.

- 3. Montrons que E est un sous-anneau de $\mathcal{M}_2(\mathbb{R})$:
 - i) $E \neq \emptyset$ car la matrice nulle

$$O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0 \times \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + 0 \times \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = 0 \times I + 0 \times A$$

est une combinaison linéaire unique dans le système générateur $\{I, A\}$ de E.

- ii) Soit U et V deux éléments de E, alors U=aI+bA et V=a'I+b'A sont des combinaisons linéaires unique, donc U-V=(a-a')I+(b-b')A est une combinaison linéaire unique de U-V dans E, d'où $U-V\in E$.
- iii) Soit U et V deux éléments de E, alors U=aI+bA et V=a'I+b'A sont des combinaisons linéaires unique, donc

$$UV = (aI + bA)(a'I + b'A) = aa'I + (ab' + ba')A + bb'A^2$$

or $A^2 = -A + 2I$, alors

$$UV = aa'I + (ab' + ba')A + bb'(-A + 2I) = (aa' + 2)I + (ab' + ba' - 1)A.$$

On pose c = aa' + 2 et d = ab' + ba' - 1, alors UV = cI + dA est une combinaison linéaire unique de UV dans le système générateur $\{I, A\}$ de E, d'où $UV \in E$

d'après i), ii) et iii) est un sous-anneau de $\mathcal{M}_2(\mathbb{R})$.

- 4. On prend $\alpha = -1$, $\beta = 2$, $\gamma = 1$ et $\delta = 0$.
 - (a) Vérifions que la relation $A^2=-A+2.I$ est satisfaite : on a $\alpha+\delta=-1+0=-1$ et $\alpha\delta-\beta\gamma=-1\times 0-2\times 1=0-2=-2$, donc les paramètres $\alpha=-1,\,\beta=2,\,\gamma=1$ et $\delta=0$ vérifient bien les relations $\left\{ \begin{array}{cc} \alpha+\delta&=-1\\ \alpha\delta-\beta\gamma&=-2, \end{array} \right.$ D'où

$$A^{-1} = \frac{1}{2} \begin{pmatrix} \alpha + 1 & \beta \\ \gamma & \delta + 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

(b) Précisons les noyaux et les images des endomorphismes φ et ψ de \mathbb{R}^2 dont les matrices dans la base naturelle sont respectivement : A et A+2.I, on a

$$A = \mathcal{M}_{(e_1, e_2)}(\varphi) = \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix} \quad \text{et} \quad A + 2I = \mathcal{M}_{(e_1, e_2)}(\psi) = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$

alors

$$\left\{ \begin{array}{lll} \varphi(e_1) & = & -e_1 + e_2 \\ \varphi(e_2) & = & 2e_1, \end{array} \right. \quad \text{et} \quad \left\{ \begin{array}{lll} \psi(e_1) & = & e_1 + e_2 \\ \psi(e_2) & = & 2(e_1 + e_2), \end{array} \right.$$

Soit $v \in \mathbb{R}^2$, alors $v = xe_1 + ye_2$, donc

$$\varphi(v) = x\varphi(e_1) + y\varphi(e_2) = x(-e_1 + e_2) + 2ye_1 = (-x + 2y)e_1 + xe_2,$$

et

$$\psi(v) = x\psi(e_1) + y\psi(e_2) = x(e_1 + e_2) + 2y(e_1 + e_2) = (x + 2y)e_1 + (x + 2y)e_2.$$

– Le noyau $Ker(\varphi)$ est défini par

$$\operatorname{Ker}(\varphi) = \{ v \in \mathbb{R}^2 / \varphi(v) = 0_{\mathbb{R}^2} \}$$

soit $\operatorname{Ker}(\varphi): (-x+2y)e_1 + xe_2 = 0_{\mathbb{R}^2}$, et comme le système $\{e_1, e_2\}$ est libre, alors

$$Ker(\varphi) : \begin{cases} -x + 2y &= 0 \\ x &= 0, \end{cases}$$

d'où $\operatorname{Ker}(\varphi): \left\{ \begin{array}{lcl} x & = & 0 \\ y & = & 0 \end{array} \right.$, c'est à dire que $\operatorname{Ker}(\varphi) = \{0_{\mathbb{R}^2}\}.$

Le noyau $\operatorname{Ker}(\varphi) = \{0_{\mathbb{R}^2}\}$ est le sous-espace vectoriel nul, alors φ est injectif, et comme \mathbb{R}^2 est de dimension finie, alors φ est bijectif, ce qui montre que $\operatorname{Im}(\varphi) = \varphi(\mathbb{R}^2) = \mathbb{R}^2$.

- Le noyau $Ker(\psi)$ est défini par

$$Ker(\psi) = \{ v \in \mathbb{R}^2 / \psi(v) = 0_{\mathbb{R}^2} \}$$

soit $\operatorname{Ker}(\psi)$: $(x+2y)e_1+(x+2y)e_2=0_{\mathbb{R}^2}$, et comme le système $\{e_1,e_2\}$ est libre, alors

$$\operatorname{Ker}(\psi) : \left\{ \begin{array}{lcl} x + 2y & = & 0 \\ x + 2y & = & 0, \end{array} \right.$$

d'où ${\rm Ker}(\psi): x+2y=0$, c'est à dire que ${\rm Ker}(\psi)$ est la droite vectorielle d'équation x+2y=0.

Le noyau $\operatorname{Ker}(\psi)$ est le sous-espace vectoriel de dimension 1, alors ψ n'est pas injectif, donc ψ n'est pas surjectif, d'où ψ n'est pas bijectif.

L'image $\text{Im}(\psi)$ de ψ est

$$\operatorname{Im}(\psi) = \{(x+2y)e_1 + (x+2y)e_2 / (x,y) \in \mathbb{R}^2\} = \{(x+2y)(e_1 + e_2) / (x,y) \in \mathbb{R}^2\}$$

d'où

$$\operatorname{Im}(\psi) = \psi(\mathbb{R}^2) = \{\alpha u \mid \alpha \in \mathbb{R}\}\$$

où $u=e_1+e_2$, ce qui prouve que $\operatorname{Im}(\psi)$ est la droite vectorielle de vecteur directeur $u=e_1+e_2$.

Exercice 6

On considère dans C le système suivant :

$$\begin{cases} (1+i)x + (1+2.i)y = 1+5.i\\ (3-i)x + (4-2.i)y = 2-i. \end{cases}$$
 (6.1)

d'inconnus complexes x et y. On pose $X = \begin{pmatrix} x \\ y \end{pmatrix}$.

1. Montrer qu'on peut écrire le système (6.1) sous la forme suivante :

$$A.X = b$$

- où A est une matrice de $\mathcal{M}_2(\mathbb{C})$ à déterminer et $b=\begin{pmatrix} 1+5.\mathrm{i}\\ 2-\mathrm{i} \end{pmatrix}$
- 2. Montrer que la matrice A est inversible, puis trouver son inverse A^{-1} .
- 3. Ecrire $X = A^{-1}b$ et calculer x et y.

Solution : Soit x et y les inconnus du système (6.2). On pose $X = \begin{pmatrix} x \\ y \end{pmatrix}$.

1. Montrons qu'on peut écrire le système (6.2) sous la forme A.X = b, en effet

$$\left\{ \begin{array}{ll} (1+\mathrm{i})x+(1+2.\mathrm{i})y &= 1+5.\mathrm{i} \\ (3-\mathrm{i})x+(4-2.\mathrm{i})y &= 2-\mathrm{i}. \end{array} \right. \Leftrightarrow \left. \left(\begin{array}{ll} 1+\mathrm{i} & 1+2.\mathrm{i} \\ 3-\mathrm{i} & 4-2.\mathrm{i} \end{array} \right) \left(\begin{array}{ll} x \\ y \end{array} \right) = \left(\begin{array}{ll} 1+5.\mathrm{i} \\ 2-\mathrm{i} \end{array} \right)$$

d'où le système AX=b où $A=\begin{pmatrix} 1+\mathrm{i} & 1+2.\mathrm{i} \\ 3-\mathrm{i} & 4-2.\mathrm{i} \end{pmatrix} \in \mathcal{M}_2(\mathbb{C})$ et $b=\begin{pmatrix} 1+5.\mathrm{i} \\ 2-\mathrm{i} \end{pmatrix} \in \mathbb{C}^2.$

2. — Montrons que la matrice A est inversible : on

$$\det(A) = (1+i)(4-2.i) - (1+2.i)(3-i) = 1-3i \neq 0$$

donc A est inversible, d'où A^{-1} l'inverse de A existe et il est unique.

- Trouvons l'inverse A^{-1} de A: $A^{-1} = \frac{1}{\det(A)}(\operatorname{Com}(A))^T$ où $\operatorname{Com}(A)$ est la comatrice de A. On a

$$Com(A) = \begin{pmatrix} 4 - 2.i & -(3 - i) \\ -(1 + 2.i) & 1 + i \end{pmatrix}$$

alors

$$A^{-1} = \frac{1}{1 - 3i} \begin{pmatrix} 4 - 2.i & -(1 + 2.i) \\ -(3 - i) & 1 + i \end{pmatrix} = \begin{pmatrix} 1 + i & \frac{1}{2} - \frac{1}{2}i \\ -\frac{3}{5} - \frac{4}{5}i & -\frac{1}{5} + \frac{2}{5}i \end{pmatrix}$$

on peut vérifier aisement que $A^{-1}A = AA^{-1} = I_2$.

3. Calculons x et y: on a

$$AX = b \Leftrightarrow X = A^{-1}b$$

$$X = \begin{pmatrix} 1+\mathrm{i} & \frac{1}{2} - \frac{1}{2}\mathrm{i} \\ -\frac{3}{5} - \frac{4}{5}\mathrm{i} & -\frac{1}{5} + \frac{2}{5}\mathrm{i} \end{pmatrix} \begin{pmatrix} 1+5.\mathrm{i} \\ 2-\mathrm{i} \end{pmatrix} = \begin{pmatrix} -\frac{5}{2} + \frac{9}{2}\mathrm{i} \\ \frac{17}{5} - \frac{24}{5}\mathrm{i} \end{pmatrix}$$

d'où $x = -\frac{5}{2} + \frac{9}{2}i$ et $y = \frac{17}{5} - \frac{24}{5}i$.